

Comparative Clinical Outcomes of Minimally Invasive Transforaminal Lumbar Interbody Fusion Patients Treated with Expandable versus Static Spacers

Adam Kremer, MD¹; Stacie Wynsma¹; Torrey Shirk, BA²; Saif Khalil, PhD²; Charles Ledonio, MD^2

1. The Brain and Spine Center, Holland, Michigan, United States

2. MERC, a division of Globus Medical, Inc., Audubon, PA, United States

Introduction

Interbody spacers for transforaminal lumbar interbody fusion (TLIF) offer favorable clinical results. Expandable devices allow in situ expansion to optimize fit and mitigate iatrogenic endplate damage occurring during trialing/impaction seen in static devices.

Patient Reported Outcomes Results

- At 3-month and final follow-up ODI scores
- expandable implant patients (14.4)
- static implant patients (22.6)
- significantly lower for expandable group (p<0.05)

Conclusion

Patients treated with expandable interbody fusion spacers used in a transforaminal approach demonstrated significantly less blood loss, shorter length of stay, lower ODI scores, and significantly fewer complications at final follow-up than patients treated with static spacers.

This study compared clinical/radiographic outcomes between static and expandable spacers following TLIF.

Materials and Methods

Retrospective chart review at a single site

- 99 patients TLIF using one of two interbody spacers
- 48 patients received a static peek interbody spacer
- 51 received an expandable titanium interbody spacer
- In this study site, by standard of care, only patients reporting recurrence of low back pain were recommended for x-rays past 3-6 months or if medically necessary

		Preon	1 m	3 m	Final	Preop to Final
						p Value
Static	ODI (%)	57±17.4	33.3±16.7	29.1±21	22.6±16.6	<0.001*
	VAS back	6.0±3.2	2.8±2	2.9±2.4	2.2±2	<0.001*
	VAS leg	7.2±2.6	2.9±2.6	2.3±2.5	$1.9{\pm}1.8$	<0.001*
Expandable	ODI (%)	44.4±11.9	32.6±18.8	13±11.7	14.4 ± 13.7	<0.001*
	VAS back	6.2±2.5	3.0±2.3	2.7±2.1	2.3±1.9	<0.001*
	VAS leg	6.2±3	2.3±2.4	1.6 ± 1.8	2.2±2.4	<0.001*

- Data Collected
- Surgical data
- Oswestry Disability Index (ODI)
- Visual Analog Scale (VAS)
- Radiographs
- Complications

Statistical Analysis

- Complication rates were compared using Fisher's exact test
- Patient reported outcomes compared with paired samples t test

Perioperative Results

Patients treated with expandable interbody spacers had significantly (p<0.05)

- Iower blood loss
- shorter hospital stays

Recurrence of Pain Results

There was a significant (p<0.05) difference in complication rates between static and expandable groups

3 of 51 (6%) expandable patients had to follow-up for recurrence of pain, compared to 12 of 48 (25%) static patients

Key words

Expandable interbody spacer • Static interbody spacer • Minimally invasive transforaminal lumbar interbody fusion

Frequency of patient return for recurrence of pain

- Operating room time was 20 minutes lower for patients treated with expandable interbody spacers versus static spacer patients
- difference was not significant (p=0.07)

	Static	Expandable
Blood loss	81.7CC	36.2CC
Hospital stays	2.2 days	1.4 days
OR time	149.5 min	130.6 min

Radiographic Measurement Results

Disc/neuroforaminal height increased significantly (p<0.05) from baseline at 3month follow-up for both groups

- although the expandable group had significantly greater neuroforaminal height
- (22.3 vs. 20.1 mm)

